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Neural adaptation plays an important role in multistable perception, but its effects are difficult to discern in sequences of
perceptual reversals. Investigating the multistable appearance of kinetic depth and binocular rivalry displays, we introduce
cumulative history as a novel statistical measure of adaptive state. We show that cumulative historyVan integral of past
perceptual states, weighted toward the most recent statesVsignificantly and consistently correlates with future dominance
durations: the larger the cumulative history measure, the shorter are future dominance times, revealing a robust effect of
neural adaptation. The characteristic time scale of cumulative history, which may be computed by Monte Carlo methods,
correlates with average dominance durations, as expected for a measure of neural adaptation. When the cumulative
histories of two competing percepts are balanced, perceptual reversals take longer and their outcome becomes random,
demonstrating that perceptual reversals are fluctuation-driven in the absence of adaptational bias. Our findings quantify the
role of neural adaptation in multistable perception, which accounts for approximately 10% of the variability of reversal timing.
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Introduction

When we view an ambiguous display, its visual
appearance continues to fluctuate between two or more
alternative states (Blake & Logothetis, 2002; Leopold &
Logothetis, 1999; Sterzer, Kleinschmidt, & Rees, 2009).
Several factors are thought to contribute to the temporal
evolution of such “multistable percepts”: first, the neural
representations of alternative appearances inhibit each
other, so that exactly one appearance dominates at any
moment (Alais, Cass, O’Shea, & Blake, 2010; Blake,
Westendorf, & Fox, 1990). Second, neural adaptation
progressively destabilizes the currently dominant appear-
ance, limiting its duration (Kang & Blake, 2010; Nawrot
& Blake, 1989; Petersik, 2002; Wolfe, 1984). Third,
stochastic fluctuations of neural activity initiate reversals
at irregular intervals (Brascamp, van Ee, Noest, Jacobs, &
van Den Berg, 2006; Hollins, 1980; Kim, Grabowecky, &
Suzuki, 2006). Fourth, volitional processes, such as eye
movements, eye blinks, or attention shifts, may also
trigger reversals of appearance (Leopold, Wilke, Maier,
& Logothetis, 2002; Mitchell, Stoner, & Reynolds, 2004;
van Dam & van Ee, 2006, but see Pastukhov & Braun,
2007).
A causal role of neural adaptation in multistable

perception predicts that dominance durations should
depend on prior dominance history, such that particularly
long periods of dominance of a particular percept should

be followed by particularly short periods of the same
percept, and vice versa. However, numerous studies have
failed to find such negative correlations between past and
future dominance periods (Borsellino, DeMarco, Allazetta,
Rinesi, & Bartolini, 1972; Fox & Herrmann, 1967; Lehky,
1995; Walker, 1975). Instead, sequential correlations
between dominance periods are typically weak and only
significant for some displays (van Ee, 2009). Indeed, the
most compelling evidence for a history dependence of
multistable perception was obtained after adaptation to
non-ambiguous displays and not from the normal multi-
stable dynamics (Blake et al., 1990; Nawrot & Blake,
1989; Petersik, 2002; Wolfe, 1984).
In particular, prolonged viewing of a non-ambiguous

stimulus leads to the dominance of the opposite appear-
ance in a subsequent ambiguous display (Nawrot & Blake,
1989; Petersik, 2002; Wolfe, 1984). Similarly, when the
dominance of one percept is forced (by physical perturba-
tion), its subsequent dominance periods are unusually
short and those of the other percept unusually long (Blake
et al., 1990), implying that prior dominance of a percept
mitigates against its future dominance. When the contrasts
of competing percepts are modulated randomly and the
average modulation leading to a reversal is reconstructed,
prolonged periods of increased contrast (and, thus, of
adaptation) are found to precede reversals (Lankheet,
2006). More recently, Kang and Blake (2010) blended
non-ambiguous adaptation into the normal reversal
sequence of an ambiguous (binocular rivalry) display,
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by means of removing the suppressed stimulus during some
dominance periods. Their results confirmed that prolonged
adaptation increases the probability of reversals. Finally,
Alais et al. (2010) examined visual sensitivity during the
continuous viewing of a physically unchanged, multi-
stable display. Toward the latter part of dominance
periods, visual sensitivity decreased slightly, consistent
with selective adaptation to the dominant percept.
In summary, although neural adaptation undoubtedly

contributes to multistable perception, it has been difficult to
discern this contribution in the normal reversal sequence of
a continuously viewed, ambiguous display. To fill this gap,
we here introduce cumulative history (an integral of past
perceptual states, weighted toward the most recent states)
as a novel and more sensitive measure of adaptive states
during multistable perception. With this measure, linear
correlations between past history and future dominance
durations are consistently significant and approximately
twice as large as with conventional measures. We also
extract from reversal sequences the characteristic time
constant of cumulative history. Finally, we show evidence
that perceptual transitions are driven by stochastic fluctua-
tions when the adaptive states (as measured by cumulative
history) of competing percepts are balanced.

Methods

Observers

Sixteen observers (10 females, 6 males, including author
AP) with normal or corrected-to-normal vision participated
in two experiments: kinetic depth (KD) and binocular
rivalry (BR). Procedures were approved by the Medical
Ethics Board of the Otto-von-Guericke-Universität, Mag-
deburg, and informed consent was obtained from all
observers. Apart from AP, all observers were naive to the
purpose of the experiment and were paid to participate.

Apparatus and stimuli

Stimuli were generated in real time (HP xw8000 PC,
http://www.hp.com) and displayed on a 19W CRT screen
(Iiyama Vision Master Pro 454, http://www.iiyama.com),
with a spatial resolution of 1600 � 1200 pixels and a
refresh rate of 100 Hz. The viewing distance was 95 cm,
so that each pixel subtended approximately 0.011-. Back-
ground luminance was 26 cd/m2 for the kinetic depth and
19 cd/m2 for the binocular rivalry displays. Anaglyph
glasses (red/cyan) were used for the dichoptic presentation.
The kinetic depth effect stimulus (KD, Figure 1A

and Movie 1) consisted of an orthographic projection of
300 dots distributed on a sphere surface (radius of 3-).
Each dot was a circular patch with a Gaussian luminance
profile (A = 0.057-) and a maximal luminance of 63 cd/m2.
The sphere was centered at fixation and rotated around

the vertical axis with a period of 4 s. As front and rear
surface dots were indistinguishable, the orthographic
projection was perfectly ambiguous and consistent with
either a clockwise or a counterclockwise rotation around
the axis. Observers perceive a three-dimensional sphere,
which reverses its direction of rotation from time to time.
The binocular rivalry stimulus (BR, Figure 1B) con-

sisted of two gratings presented dichoptically at fixation
(radius of 0.9- and spatial frequency of 2 cycles/deg). One
grating was tilted leftward by 45- and the other rightward
by 45-. The right-eye grating (green, visible only through
the green filter) was kept at 50% contrast, while the
contrast of the left-eye grating (red, visible only through
the red filter) was adjusted for each subject to balance
perceptual strengths. Binocular rivalry gives rise to
several alternative perceptual states: two uniform percepts
of either the left- or right-eye grating as well as different
kinds of transitional percepts. Transitional percepts may
be “fused” (i.e., both gratings are perceived) and/or
“fragmented” (i.e., parts of both gratings are perceived
in different image regions).

Procedure

Observers viewed the display continuously and reported
the presence and identity of a clear and uniform percept.
Observers pressed either the @ key (for left rotation or
left-eye [red] grating), the Y key (for right rotation or
right-eye [green] grating), or , key (for mixed or patchy
percepts). Each presentation lasted for 5 min, separated by
a compulsory break of (at least) 1 min. Consistent with
previous reports (Lehky, 1995; Mamassian & Goutcher,

Figure 1. Multistable displays used in the study. (A) Observers
view the two-dimensional projection of a rotating cloud of dots:
Phenomenally, they experience rotation in depth, with the front
part moving at times to the left and at times to the right (“kinetic
depth”, KD). (B) With each eye, observers view a grating of
different color and orientation: Their visual experience is domi-
nated at times by one grating and at times by the other (“binocular
rivalry”, BR). Less often, a patchwork of red and green areas is
experienced as well.
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2005), reversal rates slowed during the initial part of the
block, so that only the last 4 min (minus the final,
incomplete dominance period) of each presentation were
analyzed. Total observation time was 60 min (12 blocks)
per observer for KD and 90 min (18 blocks) per observer
for BR stimulus. Average number of clear percepts per
block was 36 for KD and 110 for BR.

Statistical analysis

From the sequence of dominance periods Ti, we
computed the mean dominance time, coefficient of
variation, and autocorrelation as

Tdom ¼ 1

N

XN
i¼1

Ti; Cv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðTi j TdomÞ2
r

PN
i¼1

Ti

;

cT ¼
PN
i¼1

ðTi j Tih iÞðTiþ1 j Tiþ1h iÞ
ATiATiþ1

: ð1Þ

Standard errors (as shown in Figure 4) were obtained with
a Monte Carlo procedure. From each full set of dominance

periods, 1000 random subsets were independently drawn,
each comprising 75% of the dominance periods. For
every subset, the mean dominance time (Tdom), the
coefficient of variation (Cv), and the autocorrelation (cT)
were computed. The standard error for each statistical
measure was then computed as the standard deviation
across the 1000 bootstrapped values.
After analyzing each presentation separately, the final

values for the mean and standard error of Tdom, Cv, and cT
were obtained by averaging the appropriate values over all
presentations.
To quantify the cumulative influence of earlier percep-

tual experience, we introduced a measure of cumulative
history, Hx(t) (see Figure 2). Let Sx(t) be a record of
perceptual experience x as a function of time t, defined as
unity while percept x dominates, 0.5 during a mixed or
patchy percept, and zero when percept x is suppressed.
The cumulative history Hx(t) computed using a leaky
integrator (Tuckwell, 2006) is then given by

CH
dHx

dt
¼ jHx tð Þ þ Sx tð Þ5 Hx tð Þ ¼ 1

CH

Z t

0

Sx tVð Þexp j
ðtj tVÞ

CH

� �
dtV;

ð2Þ
where CH is a time constant to be determined empirically.
This definition assumes that (i) the contribution of past

Figure 2. Example of cumulative history traces for series of reversals of visual appearances. (A) KD and (B) BR displays. The black traces
indicate the reported visual appearance (“left” or “right” for KD; “green,” “red,” or “patchy” for BR). The colored traces illustrate hypothetical
cumulative histories, computed with CH = 0.5Tdom (see text for details).
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experience decays exponentially, (ii) multiple contributions
of the same percept combine additively, and (iii) there is no
contribution (not even a negative one) from competing
percepts.
After computing the cumulative histories Hl and Hr for

two alternative percepts (e.g., left- or rightward rotation,
left- or right-eye grating) from a sequence of dominance
periods up to time t, we computed linear correlation
coefficients with the immediately following dominance
period T l or T r. Specifically, if ti marks the beginning of
dominance period Ti

x, we computed linear correlations
between Hx(ti) and ln(Ti

x) for all four possible combina-
tions of history and percept (Hl � T l, Hl � T r, Hr � T r,
and Hr � T l). The resulting four values were then
combined into an average absolute correlation.
To determine the characteristic time constant for each

presentation, we performed a linear regression on the

series of dominance times Ti and obtained the residual
(“detrended”) values. This ensured that cH Y 0 as CH Y V.
Next, we used the “detrended” Ti to compute average
absolute correlations for values of CH ranging from 0.001 s
to 60 s. The maximal correlation obtained was taken as the
value of cH, and the CH yielding this maximal correlation
was taken as the definitive value of CH (see Figure 3).
After analyzing each presentation separately, the final

values for the mean and standard error of cH and CH were
obtained by averaging the appropriate values over all
presentations.
The fraction of the variance of dominance periods

Var(lnT) that is explained by cumulative history may be
defined with respect to the linear regression:

lnT ¼ !H þ "; ð3Þ

Figure 3. Individual dominance periods depend on dominance history. (A, B) Dominance periods T of one percept (normalized mean
T standard error in bins of $H = 0.1), as a function of the cumulative history H of the same (red), or other (blue), percept, at the time of the
initial reversal. Note that Hsame + Hother , 1. (C, D) Pearson correlation coefficients cH (mean absolute values) between dominance
duration and history, as a function of the decay constant CH. The colors identify different observers (see inset). The maximal correlation is
obtained for values of CH , 0.5Tdom.
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and computed as the coefficient of determination R2:

R2 ¼ 1j
VarðlnT j !Hj "Þ

VarðlnTÞ ¼ c2H: ð4Þ

Mutual information was computed by discretizing
dominance times lnT (bin width of 300 ms) and
cumulative history H (bin width of 0.05) and by compar-
ing the joint distribution P(lnT, H) with the marginal
distributions P(lnT) and P(H):

Im ¼
Xn
lnT;H

P lnT;Hð Þlog2
PðlnT;HÞ
PðlnTÞPðHÞ : ð5Þ

Results

We studied two canonical, but quite different, kinds of
multistable displays (Figure 1A and Movie 1): kinetic
depth (KD) in a two-dimensional projection of a rotating
cloud of dots (Wallach & O’Connell, 1953) and binocular
rivalry (BR) between two gratings of different color and
orientation (Meng & Tong, 2004; Wheatstone, 1838).
Eight observers viewed the KD display continuously for
5 min and reported its apparent rotation in depth as either
“front left” or “front right.” The BR display was viewed for
the same period by eleven observers, who reported its
appearance as either “uniformly red,” “uniformly green,”
or “patchy” (i.e., a patchwork of red and green areas).
Spontaneous reversals of appearance occurred with both
displays but were less frequent with the KD displays: The
average dominance duration of uniform appearances was
Tdom = 11.4 T 7.6 s for KD and Tdom = 2.5 T 1.05 s for BR.
The patchy appearance (only BR) lasted for 1.05 T 0.42 s
on average.
As is typical for multistable percepts (Borsellino et al.,

1972; Fox & Herrmann, 1967; Walker, 1975), dominance
periods were highly variable, approximately Gamma-
distributed and were shorter during the initial part of the
block (Lehky, 1995; Mamassian & Goutcher, 2005). The
coefficients of variation were Cv = 0.67 T 0.18 (KD) and
Cv = 0.48 T 0.12 (BR). Correlations between successive
dominance periods of the same appearance were fairly
small (cT = 0.09 T 0.1 for KD and cT = 0.15 T 0.05 for BR)
and reached significance (p G 0.05) for one (of 8) observer
of the KD display and for four (of 11) observers of the BR
display. Because sequential correlations are weak and
often fail to reach significance, multistable perception has
sometimes been considered a “memoryless” process
(Blake, Fox, & McIntyre, 1971; Borsellino et al., 1972;
Fox & Herrmann, 1967; Leopold & Logothetis, 1999;
Levelt, 1965; Walker, 1975).

Contrary to this view, dominance times do reflect past
perceptual history in subtle but consistently significant
ways. To demonstrate this, we compute hypothetical
states of selective adaptation for each percept, which we
term cumulative histories. Specifically, we convolve the
record of dominance reports, Sx(t) with an exponential
kernel (Drew & Abbott, 2006; Tuckwell, 2006) to obtain a
cumulative measure of perceptual history up to time t:

Hx tð Þ , 1

CH

Z t

0

Sx tVð Þexp j
ðt j tVÞ

CH

� �
dtV; ð6Þ

where x Z {right/left, red/green} denotes a uniform
percept and CH is a time constant. Sx(t) takes values of 1
for dominance, 0.5 for patchy dominance (BR only), and 0
for non-dominance. The cumulative history Hx(t) reflects
both how long and how recently a given percept has
dominated in the past. Figure 2 illustrates the time courses
of Sx(t) and Hx(t), for two representative series of
dominance reports. Note that, in the absence of “patchy”
appearances, for example, for KD stimulus, the cumu-
lative histories of two competing percepts approach unity
(Hleft + Hright , 1).
For suitable values of CH (see below), we find that a

measure of the pastVcumulative history H(t)Vis a
statistically reliable predictor of the futureVthe next
dominance period Ti (Figures 3A and 3B). Specifically,
the more a percept has dominated in the past, particularly
recently (larger H value), the shorter the same percept
(and the longer the other percept) dominates in the
immediate future. These correlations were comparatively
large and reached significance for 17 of 19 observers
(cH = 0.24 T 0.1 with p G 0.001 for KD displays and cH =
0.30 T 0.09 with p G 0.0001 for BR displays). Thus,
correlations with cumulative history were not only more
consistently significant than but also twice as large as
sequential correlations of dominance periods (Figure 4A).
Parenthetically, similar results may be obtained with other
kernels (e.g., half-Gaussian kernels that weighs the recent
past more heavily than the distant past).
The highest correlation coefficients are obtained for

each observer when the value of CH equals roughly half
the mean dominance time Tdom (Figures 3C and 3D).
Defining +H K CH /Tdom, the KD results showed maximal
correlations for +H = 0.54 T 0.21, while the BR results
exhibited peak correlations for +H = 0.56 T 0.28. The
values obtained for CH are robust and not due to selection
bias: when the data for each observer are divided in half
and only one half is used to optimize CH, virtually
identical correlation coefficients are obtained from the
other half (not shown).
These observations are doubly significant. First, they

show that perceptual dominance depends on prior percep-
tual history in a robust and consistently significant manner.
Second, they reveal a characteristic time constant for this
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dependence, which is consistent with a gradual buildup of
selective adaptation during perceptual dominance.
Interestingly, a buildup of selective adaptation is not the

only factor to determine mean dominance times Tdom. As
shown in Figure 4B, the inferred time constant CH of
neural adaptation correlates only loosely with the average
dominance period Tdom. For both displays and all
observers, the linear correlation coefficient was 0.825

( p G 0.001). However, when each display is considered
separately, the correlation drops to 0.64 (p = 0.09) for KD
and to 0.36 (p = 0.28) for BR.
An analysis of transitional statesVi.e., the “patchy”

appearances of the BR displayVsuggests that, in the
absence of any adaptive bias, perceptual reversals are
driven by stochastic factors. Observers typically reported
a “patchy” appearance during the transition from one
uniform appearance to another (forward transition). Occa-
sionally, however, a “patchy” period merely interrupted a
uniform appearance, which afterward resumed (return
transition; Brascamp et al., 2006; Hollins, 1980). Both
forward and return transitions were profoundly affected
by the balance of cumulative histories (Figure 5):
“Patchy” periods lasted longer, and the return probability
was far higher, when cumulative histories were approx-
imately balanced and $H , 0. In some observers, transi-
tional states (which are often ignored in the calculation of

Figure 4. Scatter plot of observables. (A) Comparison between
autocorrelation (cT) and correlation with cumulative history (cH).
Open circles mark observers for whom cH failed to reach signifi-
cance. (B) Correlation between average dominance periods Tdom

and decay constant CH, for 8 observers for KD and 11 observers for
BR. Error bars represent standard deviation of bootstrapped means
distribution for respective variable (see Methods section).

Figure 5. Transition periods depend on dominance history.
(A) Transition duration (mean T standard error), in units of Tdom,
as a function of history difference $H K Hred j Hgreen. For $H , 0,
transition durations increased 73% above their average value
(black line). (B) Probability of return transitions (redYred or
greenYgreen) as a function of history difference $H. For $H , 0,
return probability rose fourfold above its average value (black
line).
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sequential correlations) even predict something about the
subsequent dominance period. This is evident from the
fact that some cH values are larger than zero for very
small values of CH (Figures 3C and 3D). Note that, for
CH = 0, the value of “cumulative history” corresponds directly
to the identity of the preceding state (H = 0, 0.5, or 1).
The total entropy of reversal timing can be computed

from the distribution of dominance periods (see Methods
section). From the joint distribution of future dominance
periods and past cumulative history, one may further
determine which fraction of the total entropy is shared
between these two measures (mutual information). Using
this approach, one finds that cumulative history accounts
(on average) for approximately 9% of the entropy of
reversal timing. Essentially, the same conclusion is
reached when one compares the total variance of
dominance periods with the variance that is explained by
cumulative history (coefficient of determination). The
fraction of explained variance is (on average) approx-
imately 8.5%.

Discussion

We have introduced a novel statistical measureV
cumulative historyVto analyze serial reversals in the
appearance of multistable displays. The results obtained
with this measure go beyond earlier findings in several
ways. First, they reveal a consistently robust and statisti-
cally significant correlation between past perceptual
history and future dominance duration, which does not
become evident with conventional measures such as
sequential correlations of dominance durations (Borsellino
et al., 1972; Fox & Herrmann, 1967; Lehky, 1995; van Ee,
2009; Walker, 1975). Second, they demonstrate that
neural adaptation of the dominant percept raises reversal
probability even when an ambiguous display is viewed
continuously. All previous evidence on this point involved
prolonged adaptation to non-ambiguous displays (Blake
et al., 1990; Kang & Blake, 2010; Nawrot & Blake, 1989;
Petersik, 2002; Wolfe, 1984). Third, they reveal the
characteristic time constant of neural adaptation. Taken
together, this constitutes the most compelling evidence so
far that neural adaptation contributes to multistable
dynamics.
Analyzing reversal sequences of kinetic depth and

binocular rivalry displays, we found dominance periods to
be correlated (on average) twice as well with cumulative
history than with the immediately preceding dominance
periods (Figure 4A). Moreover, correlations with cumulative
history were significant in 17 of 19 observers, whereas
correlations with earlier dominance periods were signifi-
cant in only 5 of 19 observers. Cumulative history is a
more informative measure because it integrates over
several preceding dominance periods, taking into account
both how long and how recently a particular percept has

dominated in the past. Due to its short time constant (see
below), cumulative history assumes intermediate values
only after one or more short dominance periods. In these
(comparatively rare) situations, cumulative history is
expected to be particularly predictive.
Even in terms of cumulative history, the effect of neural

adaptation is comparatively weak and linear correlation
coefficients do not much exceed 0.4. To properly gauge
the influence of neural adaptation, it is helpful to compute
its effect on reversal timing: cumulative history accounts
for (on average) approximately 9% of the entropy and
approximately 8.5% of the variance of reversal timing.
These values should be considered a lower bound, because
cumulative history is merely an estimate (and not an
equivalent) of the true state of neural adaptation.
The fact that the influence of neural adaptation is so

slight explains, of course, why it has proven so difficult to
demonstrate this influence during the normal course of
multistable perception. Accordingly, the timing or rever-
sals must be dominated by factors other than neural
adaptation. These “other factors” certainly include sponta-
neous fluctuations of neural activity (see below) and
perhaps also volitional processes such as eye movements,
eye blinks, or attention shifts (Leopold et al., 2002;
Mitchell et al., 2004; van Dam & van Ee, 2006, but see
Pastukhov & Braun, 2007).
Given an observed reversal sequence, one can typically

determine the characteristic time constant for cumulative
history. To this end, one compares the observed sequence
with several hypothetical cumulative history time series,
each computed with a different time constant. If at least
some of these time series correlate significantly with the
observed sequence, then the best-correlated time series
provides a characteristic time constant for the observed
sequence. Typically, the resulting time constants are
comparable to the average dominance time, with a linear
correlation coefficient of 0.825 (see Figure 4B), suggest-
ing that cumulative history does indeed capture the time
evolution of neural adaptation. Note, however, that most
computational models of multistable perception (Laing &
Chow, 2002; Lankheet, 2006; Moreno-Bote, Rinzel, &
Rubin, 2007; Noest, van Ee, Nijs, & van Wezel, 2007;
Shpiro, Moreno-Bote, Rubin, & Rinzel, 2009; Wilson,
2003) predict a strictly monotonic relation between
average dominance times and the time constant of neural
adaptation (sampling error apart). Our results are not
consistent with such a strict correlation, even allowing for
sampling error. Apparently, factors other than the time
constant of cumulative history introduce additional var-
iance in the mean dominance times. While there are many
conceivable reasons for this partial dissociation, one
intriguing possibility is that the collective dynamics of
neural representations is partially uncoupled from the time
constants of individual neural components (Braun &
Mattia, 2010; Gigante, Mattia, Braun, & Del Giudice,
2009). Further work is needed to understand the full
implications of this observation.
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Our observations about transitional states suggest that
the time course of neural adaptation is captured well by
cumulative history. It has long been understood that the
transition between two distinct appearances is informa-
tive about the driving forces of multistable dynamics
(Brascamp et al., 2006; Hollins, 1980). In our binocular
rivalry display, observers frequently reported transitional
states in which both gratings were visible (“patchy” or
“fused” appearances). In the kinetic depth display, transi-
tional states were too rare to be analyzed. To ascertain the
influence of neural adaptation on transitional states, we
compared both the duration and the outcome of such
transitional states with the cumulative history measure
(Figure 5). We observed approximately 50% longer
transition phases and approximately 200% more “return
transitions” (i.e., transitions leading back to the preceding
percept) when the difference between the two cumulative
histories was close to zero, compared to the overall
average values. The implication is, of course, that at other
timesVwhen neural adaptation of one percept exceeds
that of the otherVtransitional states quickly make way for
the less adapted percept. Thus, adaptive state, as captured
by cumulative history, clearly plays a causal role in
perceptual reversals.
Computational models of multistable phenomena pro-

pose that perceptual reversals reflect sudden shifts of
neural activity that arise spontaneously within attractor
neural networks (Braun & Mattia, 2010; Laing & Chow,
2002; Lankheet, 2006; Moreno-Bote et al., 2007; Noest
et al., 2007; Shpiro et al., 2009; Wilson, 2003; Wilson,
2007). Presumably, a multistable display stimulates recur-
rent neural networks with several distinct steady states of
neural activity (“attractor states”). If the stability of these
steady states were not absolute but were continually
undermined by neural adaptation and by neural noise,
the result would be a continual sequence of sporadic
reversals, in which one temporarily stable attractor state
would suddenly make way for another such state. The
degree to which such reversals would be driven by neural
adaptation (“limit cycle dynamics”), by neural noise
(“bistable dynamics”), or indeed by volitional processes
remains unclear, although a number of recent studies have
emphasized the importance of spontaneous activity fluc-
tuations (neural noise; Kim et al., 2006; Lankheet, 2006).
Intuitively, attractor neural network models can be

understood in terms of a double-well potential metaphor
(Brascamp et al., 2006; Kim et al., 2006). Network
activity is represented by a ball rolling on an energy
landscape that is not static but continuously deformed by
adaptation (Figure 6). Specifically, the floor of an
occupied well is raised progressively by neural adaptation
of the currently dominant percept. Simultaneously, as the
other percept recovers from adaptation, the unoccupied
well gradually becomes deeper. In addition to these
deterministic effects, spontaneous activity fluctuations
superimpose a diffusion-like dynamics and ensure that
the energy landscape is widely explored.

The double-well metaphor also accounts for our
observations with regard to transitional states (Brascamp
et al., 2006). Assume that perceptual reversals are initiated
by spontaneous activity fluctuations of sufficient ampli-
tude to overcome the energy barrier that separates the two
wells. When one percept is highly adapted, the energy
landscape will be asymmetric, with the suppressed percept
being energetically favored over the dominant percept
(Figure 6A). In this case, a transition will be rapid and its
outcome will be deterministic. In contrast, when neural
adaptation of the two competing percepts is balanced, the
energy landscape will be symmetric and will consist of
two comparably shallow wells (Figure 6B). The determin-
istic effects being weak, the diffusion-like nature of the
dynamics will become evident: Transitions will be slow
and their outcome will be random.
As reported in preliminary form (Rodriguez et al.,

2010), our results are in detailed agreement with double-
well potential models. If parameter values are chosen
judiciously, the model of Laing and Chow (2002), for
example, closely replicates the observed dominance times,
their variability, and their (weak) dependence on prior
dominance history. These results, which will be presented
fully elsewhere, contradict a recent claim (van Ee, 2009)
that only “slow” fluctuations in adaptive state can account
for a weak dependence of dominance times on prior
dominance history. In the hands of that author (van Ee,

Figure 6. Double-well potential (schematic). (A) When one state
fully adapted (right, high floor) and the other fully recovered (left,
low floor), a transition initiated by a spontaneous fluctuation (red
arrow) will terminate rapidly and deterministically (green arrow).
(B) When both states are comparably adapted, a transitional state
(red arrow) will terminate more slowly and more randomly (green
arrows).
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2009), “fast” noise in neural activity (as postulated by
double-well potential models) failed to produce a weak
dependence on prior history. We question the generality
of this negative finding and note that the combination of
“slow” perceptual transitions and “fast” fluctuations of
neural activity is readily accommodated by the theory
of metastable states (Hänggi, Talkner, & Borkovec, 1990).
A full discussion of this issue must await our forthcoming
publication.
We conclude that adaptation of the dominant state plays

an important causal role in dynamics of multistable
displays. However, its effect is rather weak and limited
to increasing the probability of reversals. The precise
timing of perceptual reversals is determined largely by
other factors, such as spontaneous activity fluctuations.

Acknowledgments

The authors were supported by the BMBF Bernstein
Network and the State of Saxony-Anhalt.

Commercial relationships: none.
Corresponding author: Alexander Pastukhov.
Email: pastukhov.alexander@gmail.com.
Address: Leipziger str. 44, Magdeburg 39120, Germany.

References

Alais, D., Cass, J., O’Shea, R. P., & Blake, R. (2010).
Visual sensitivity underlying changes in visual con-
sciousness. Current Biology, 20, 1362–1367.

Blake, R., & Logothetis, N. K. (2002). Visual competi-
tion. Nature Reviews Neuroscience, 3, 13–21.

Blake, R., Westendorf, D., & Fox, R. (1990). Temporal
perturbations of binocular rivalry. Perception &
Psychophysics, 48, 593–602.

Blake, R. R., Fox, R., & McIntyre, C. (1971). Stochastic
properties of stabilized-image binocular rivalry alter-
nations. Journal of Experimental Psychology, 88,
327–332.

Borsellino, A., De Marco, A., Allazetta, A., Rinesi, S., &
Bartolini, B. (1972). Reversal time distribution in the
perception of visual ambiguous stimuli. Kybernetik,
10, 139–144.

Brascamp, J. W., van Ee, R., Noest, A. J., Jacobs,
R. H. A. H., & van Den Berg, A. V. (2006). The time
course of binocular rivalry reveals a fundamental role
of noise. Journal of Vision, 6(11):8, 1244–1256,
http://www.journalofvision.org/content/6/11/8,
doi:10.1167/6.11.8. [PubMed] [Article]

Braun, J., & Mattia, M. (2010). Attractors and noise: Twin
drivers of decisions and multistability. Neuroimage,
52, 740–751.

Drew, P. J., & Abbott, L. F. (2006). Models and properties
of power-law adaptation in neural systems. Journal of
Neurophysiology, 96, 826–833.

Fox, R., & Herrmann, J. (1967). Stochastic properties of
binocular rivalry alternations. Perception & Psycho-
physics, 2, 432–446.

Gigante, G., Mattia, M., Braun, J., & Del Giudice, P.
(2009). Bistable perception modeled as competing
stochastic integrations at two levels. PLoS Computa-
tional Biology, 5, e1000430.

Hänggi, P., Talkner, P., & Borkovec, M. (1990). Reaction-
rate theory: Fifty years after Kramers. Reviews of
Modern Physics, 62, 251–341.

Hollins, M. (1980). The effect of contrast on the complete-
ness of binocular rivalry suppression. Perception &
Psychophysics, 27, 550–556.

Kang, M.-S., & Blake, R. (2010). What causes alternations
in dominance during binocular rivalry? Attention,
Perception & Psychophysics, 72, 179–186.

Kim, Y.-J., Grabowecky, M., & Suzuki, S. (2006).
Stochastic resonance in binocular rivalry. Vision
Research, 46, 392–406.

Laing, C. R., & Chow, C. C. (2002). A spiking neuron
model for binocular rivalry. Journal of Computa-
tional Neuroscience, 12, 39–53.

Lankheet, M. J. M. (2006). Unraveling adaptation and
mutual inhibition in perceptual rivalry. Journal of
Vision, 6(4):1, 304–310, http://www.journalofvision.
org/content/6/4/1, doi:10.1167/6.4.1. [PubMed]
[Article]

Lehky, S. R. (1995). Binocular rivalry is not chaotic.
Proceedings of the Royal Society of London B:
Biological Sciences, 259, 71–76.

Leopold, D., & Logothetis, N. (1999). Multistable
phenomena: Changing views in perception. Trends
in Cognitive Sciences, 3, 254–264.

Leopold, D. A., Wilke, M., Maier, A., & Logothetis, N. K.
(2002). Stable perception of visually ambiguous
patterns. Nature Neuroscience, 5, 605–609.

Levelt, W. J. M. (1965).On binocular rivalry. Soesterberg,
The Netherlands: Institute for Perception RVO-TNO.

Mamassian, P., & Goutcher, R. (2005). Temporal dynam-
ics in bistable perception. Journal of Vision, 5(4):7,
361–375, http://www.journalofvision.org/content/5/4/7,
doi:10.1167/5.4.7. [PubMed] [Article]

Meng, M., & Tong, F. (2004). Can attention selectively bias
bistable perception? Differences between binocular
rivalry and ambiguous figures. Journal of Vision, 4(7):2,

Journal of Vision (2011) 11(10):12, 1–10 Pastukhov & Braun 9

http://www.ncbi.nlm.nih.gov/pubmed/17209732
http://www.journalofvision.org/content/6/11/8
http://www.ncbi.nlm.nih.gov/pubmed/16889470
http://www.journalofvision.org/content/6/4/1
http://www.ncbi.nlm.nih.gov/pubmed/15929658
http://www.journalofvision.org/content/5/4/7


539–551, http://www.journalofvision.org/content/4/7/2,
doi:10.1167/4.7.2. [PubMed] [Article]

Mitchell, J. F., Stoner, G. R., & Reynolds, J. H. (2004).
Object-based attention determines dominance in
binocular rivalry. Nature, 429, 410–413.

Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-
induced alternations in an attractor network model of
perceptual bistability. Journal of Neurophysiology,
98, 1125–1139.

Nawrot, M., & Blake, R. (1989). Neural integration of
information specifying structure from stereopsis and
motion. Science, 244, 716–718.

Noest, A. J., van Ee, R., Nijs, M. M., & van Wezel, R. J. A.
(2007). Percept-choice sequences driven by interrupted
ambiguous stimuli: A low-level neural model. Journal
of Vision, 7(8):10, 1–14, http://www.journalofvision.
org/content/7/8/10, doi:10.1167/7.8.10. [PubMed]
[Article]

Pastukhov, A., & Braun, J. (2007). Perceptual reversals
need no prompting by attention. Journal of Vision,
7(10):5, 1–17, http://www.journalofvision.org/content/
7/10/5, doi:10.1167/7.10.5. [PubMed] [Article]

Petersik, J. T. (2002). Buildup and decay of a three-
dimensional rotational aftereffect obtained with a
three-dimensional figure. Perception, 31, 825–836.

Rodriguez, P. G., Pastukhov, A., Deco, G., Braun, J.,
Guillamon, A., & Haenicke, J. (2010). Variability of
dominance phases in bistable perception: History-
dependence and noisy dynamics. Front. Comput.
Neurosci. Conference Abstract: Bernstein Conference
on Computational Neuroscience.

Shpiro, A., Moreno-Bote, R., Rubin, N., & Rinzel, J.
(2009). Balance between noise and adaptation in
competition models of perceptual bistability. Journal
of Computational Neuroscience, 27, 37–54.

Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The
neural bases of multistable perception. Trends in
Cognitive Sciences, 13, 310–318.

Tuckwell, H. C. (2006). Introduction to theoretical neuro-
biology: Volume 1. Linear cable theory and dendritic
structure. Cambridge, UK: Cambridge University
Press.

van Dam, L. C. J., & van Ee, R. (2006). Retinal image shifts,
but not eye movements per se, cause alternations in
awareness during binocular rivalry. Journal of Vision,
6(11):3, 1172–1179, http://www.journalofvision.org/
content/6/11/3, doi:10.1167/6.11.3. [PubMed] [Article]

van Ee, R. (2009). Stochastic variations in sensory
awareness are driven by noisy neuronal adaptation:
Evidence from serial correlations in perceptual bist-
ability. Journal of the Optical Society of America A,
Optics, Image Science, and Vision, 26, 2612–2622.

Walker, P. (1975). Stochastic properties of binocular
rivalry alternations. Perception & Psychophysics,
18, 467–473.

Wallach, H., & O’Connell, D. N. (1953). The kinetic
depth effect. Journal of Experimental Psychology, 45,
205–217.

Wheatstone, C. (1838). Contributions to the physiology of
vision: Part the first. On some remarkable, and
hitherto unobserved, phenomena of binocular vision.
Philosophical Transactions of the Royal Society of
London, 128, 371–394.

Wilson, H. R. (2003). Computational evidence for a
rivalry hierarchy in vision. Proceedings of the
National Academy of Sciences of the United States
of America, 100, 14499–14503.

Wilson, H. R. (2007). Minimal physiological conditions
for binocular rivalry and rivalry memory. Vision
Research, 47, 2741–2750.

Wolfe, J. M. (1984). Reversing ocular dominance and
suppression in a single flash. Vision Research, 24,
471–478.

Journal of Vision (2011) 11(10):12, 1–10 Pastukhov & Braun 10

http://www.ncbi.nlm.nih.gov/pubmed/15330700
http://www.journalofvision.org/content/4/7/2
http://www.ncbi.nlm.nih.gov/pubmed/17685817
http://www.journalofvision.org/content/7/8/10
http://www.ncbi.nlm.nih.gov/pubmed/17997674
http://www.journalofvision.org/content/7/10/5
http://www.ncbi.nlm.nih.gov/pubmed/17209727
http://www.journalofvision.org/content/6/11/3

